UPDATE:The WPF Spectrum Analyzer is now part of the WPF Sound Visualization Library. That is where you will find source code for the latest and most-stable versions of the Spectrum Analyzer. Also, this post has been updated and superseded by this one. I’m leaving this one here for historical purposes, but check out the other article for a more performant and scalable version the control.

A coworker and I were recently talking about doing audio visualization with Windows Presentation Foundation (WPF). One of the more common visualization techniques for music applications is to slap in a simple banded spectrum analyzer. I thought such spectrum analyzers would be easy to find, as they’re included in many applications written in toward all sorts of platforms. A bit surprisingly, however, was that such visualizations in WPF aren’t as common as I would have expected. I thought I could use the rarity of such controls as an opportunity to play around with some fast rendering techniques in WPF. I was fairly pleased with the outcome, so I thought I would share the results.

The Spectrum Analyzer Control

The Spectrum Analyzer Control

About Playing Audio

If any of you have tried to do anything with audio in .NET, you’ve probably found the out-of-the-box functionality to be pretty limited. WPF has some enhancements in this area, but it is nowhere near some of the alternatives. Going the other way, one may choose to use direct references to DirectSound to get the power they need. However, this leaves it up to you, the coder, to deal with all the scaling back when the user’s machine doesn’t meet the needs. I find it much easier to use some of the third party sound APIs out there who take care of all these gritty details

My “sound suite” of choice is the BASS API. BASS is loaded with features. Along with getting sound set up to play, it also has the ability to read all sorts of file formats, do effects processing, record sound, and more. However, BASS is unmanaged. To interface BASS with .NET, one will need the aptly named BASS.NET. At a passing glance, one may see BASS.NET as a thin .NET wrapper over the BASS API. However, it actually has some very useful additions. Benefits include tag reading support, useful methods for parsing FFT data, and even some visualizers included (but they are targeted to WinForms/GDI+). It was actually the source code for these visualizers that I used as a starting point for this WPF control. BASS.NET’s author, Bernd Niedergesaess (a.k.a radio42), was kind enough to let me share this source code with you today even though he really did all of the heavy-lifting/pioneering for this project during his development of BASS.NET.

The Spectrum Analyzer

Now, I’m not new to writing Spectrum Analyzers. Previous software engineering jobs had me writing controls for Windows-based Spectrum Analyzers in the past. However, these weren’t for audio visualization, but were more for scientific measurements of radio and microwave signals. One of the things I noticed about audio visualizations is that a lot of accuracy is ignored in favor of making the visualizer look and feel in line with what we perceive. I won’t go into great amounts of detail on this, but when you see funky methods being applied to FFT results in the source code, this is probably what is going on. One of the most common examples of this is that FFT data is never displayed on the Y-axis linearly, but rather using a square root function and a scaling factor. Without this, you see most of the visualizer moving very little, except for the occasional large burst of energy. This is NOT how your ears/brain perceive the sound you’re listening to.

So, let’s take a look at what the control looks like in XAML:

1
2
3
4
5
6
7
8
9
10
11
<my:SpectrumAnalyzer x:Name="spectrumAnalyzer"
                     Height="160"
                     HorizontalAlignment="Stretch"
                     VerticalAlignment="Bottom"
                     BarSpacing="5"
                     AveragePeaks="False"
                     MinimumFrequency="20"
                     MaximumFrequency="20000"
                     BarCount="32"
                     PeakFallDelay="10"
                     BarHeightScaling="Decibel" />

It all looks pretty straightforward. Besides the attributes I’ve shown on the control here, I also have included dependency properties to set brushes for the bars and their peaks, as well as a dependency property for the linearity of displayed channel data. Here’s the XAML for the Spectrum Analyzer control itself.

1
2
3
4
5
6
7
8
9
<UserControl x:Class="BandedSpectrumAnalyzer.SpectrumAnalyzer"
             xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
             xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
    <Canvas>
        <Image Name="SpectrumImage"
               HorizontalAlignment="Stretch"
               VerticalAlignment="Stretch" />
    </Canvas>
</UserControl>

Shockingly simple, no? That’s because the meat of this control is in the code-behind. I’ve chosen to do a more classic pixel-based rendering technique for this UserControl. This is good and bad, but not the norm for WPF development. It’s good because it gives me a bit more control in terms of performance. It’s bad in that WPF is meant to be scaled freely, and now it is my responsibility to make that work well. Now, here’s where the real work happens.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Threading;
using Un4seen.Bass;

namespace BandedSpectrumAnalyzer
{
    /// <summary>
    /// Interaction logic for SpectrumAnalyzer.xaml
    /// </summary>
    public partial class SpectrumAnalyzer : UserControl
    {
        #region Fields
        private DispatcherTimer animationTimer;
        private RenderTargetBitmap anaylzerBuffer;
        private DrawingVisual drawingVisual = new DrawingVisual();
        private float[] channelData = new float[2048];
        private float[] channelPeakData;
        private int scaleFactorLinear = 9;
        private int scaleFactorSqr = 2;
        private int maxFFTData = 4096;
        private BASSData maxFFT = (BASSData.BASS_DATA_AVAILABLE | BASSData.BASS_DATA_FFT4096);
        private double bandWidth = 1.0;
        private double barWidth = 1;
        private int maximumFrequencyIndex = 2047;
        private int minimumFrequencyIndex = 0;
        private int sampleFrequency = 44100;
        private int[] barIndexMax;
        private int[] barLogScaleIndexMax;
        private BassEngine bassEngine;
        #endregion

        #region Dependency Property Declarations
        public static readonly DependencyProperty MaximumFrequencyProperty;
        public static readonly DependencyProperty MinimumFrequencyProperty;
        public static readonly DependencyProperty BarCountProperty;
        public static readonly DependencyProperty BarSpacingProperty;
        public static readonly DependencyProperty PeakFallDelayProperty;

        protected static readonly DependencyProperty StreamHandleProperty =
            DependencyProperty.Register("StreamHandle",
            typeof(int),
            typeof(SpectrumAnalyzer));

        public static readonly DependencyProperty FrequencyScaleIsLinearProperty =
            DependencyProperty.Register("FrequencyScaleIsLinear",
            typeof(bool),
            typeof(SpectrumAnalyzer));


        public static readonly DependencyProperty BarHeightScalingProperty =
            DependencyProperty.Register("BarHeightScaling",
            typeof(BarHeightScaling),
            typeof(SpectrumAnalyzer));

        public static readonly DependencyProperty AveragePeaksProperty =
            DependencyProperty.Register("AveragePeaks",
            typeof(bool),
            typeof(SpectrumAnalyzer));

        public static readonly DependencyProperty BarBrushProperty =
            DependencyProperty.Register("BarBrush",
            typeof(Brush),
            typeof(SpectrumAnalyzer));

        public static readonly DependencyProperty PeakBrushProperty =
            DependencyProperty.Register("PeakBrush",
            typeof(Brush),
            typeof(SpectrumAnalyzer));
        #endregion

        #region Dependency Properties
        /// <summary>
        /// The maximum display frequency (right side) for the spectrum analyzer.
        /// </summary>
        /// <remarks>This value should be somewhere between 0 and half of the maximum sample rate. If using
        /// the maximum sample rate, this would be roughly 22000.</remarks>
        [Category("Common")]
        public int MaximumFrequency
        {
            get { return (int)GetValue(MaximumFrequencyProperty); }
            set
            {
                SetValue(MaximumFrequencyProperty, value);
            }
        }

        /// <summary>
        /// The minimum display frequency (left side) for the spectrum analyzer.
        /// </summary>
        [Category("Common")]
        public int MinimumFrequency
        {
            get { return (int)GetValue(MinimumFrequencyProperty); }
            set
            {
                SetValue(MinimumFrequencyProperty, value);
            }
        }

        /// <summary>
        /// The number of bars to show on the sprectrum analyzer.
        /// </summary>
        /// <remarks>A bar's width can be a minimum of 1 pixel. If the BarSpacing and BarCount property result
        /// in the bars being wider than the chart itself, the BarCount will automatically scale down.</remarks>
        [Category("Common")]
        public int BarCount
        {
            get { return (int)GetValue(BarCountProperty); }
            set
            {
                SetValue(BarCountProperty, value);
            }
        }

        /// <summary>
        /// The brush used to paint the bars on the spectrum analyzer.
        /// </summary>
        [Category("Common")]
        public Brush BarBrush
        {
            get { return (Brush)GetValue(BarBrushProperty); }
            set
            {
                SetValue(BarBrushProperty, value);
            }
        }

        /// <summary>
        /// The brush used to paint the peaks on the spectrum analyzer.
        /// </summary>
        [Category("Common")]
        public Brush PeakBrush
        {
            get { return (Brush)GetValue(PeakBrushProperty); }
            set
            {
                SetValue(PeakBrushProperty, value);
            }
        }

        /// <summary>
        /// The delay factor for the peaks falling. This is relative to the
        /// refresh rate of the chart.
        /// </summary>
        [Category("Common")]
        public int PeakFallDelay
        {
            get { return (int)GetValue(PeakFallDelayProperty); }
            set
            {
                SetValue(PeakFallDelayProperty, value);
            }
        }

        /// <summary>
        /// The spacing, in pixels, between the bars.
        /// </summary>
        [Category("Common")]
        public double BarSpacing
        {
            get { return (double)GetValue(BarSpacingProperty); }
            set
            {
                SetValue(BarSpacingProperty, value);
            }
        }

        /// <summary>
        /// If true, the bar height will be displayed linearly with the intensity value.
        /// Otherwise, the bars will be scaled with a square root function.
        /// </summary>
        [Category("Common")]
        public BarHeightScaling BarHeightScaling
        {
            get { return (BarHeightScaling)GetValue(BarHeightScalingProperty); }
            set
            {
                SetValue(BarHeightScalingProperty, value);
            }
        }

        /// <summary>
        /// If true, this will display the frequency scale (X-axis of the spectrum analyzer)
        /// in a linear scale. Otherwise, the scale will be logrithmic.
        /// </summary>
        [Category("Common")]
        public bool FrequencyScaleIsLinear
        {
            get { return (bool)GetValue(FrequencyScaleIsLinearProperty); }
            set
            {
                SetValue(FrequencyScaleIsLinearProperty, value);
            }
        }

        /// <summary>
        /// If true, each bar's peak value will be averaged with the previous
        /// bar's peak. This creates a smoothing effect on the bars.
        /// </summary>
        [Category("Common")]
        public bool AveragePeaks
        {
            get { return (bool)GetValue(AveragePeaksProperty); }
            set
            {
                SetValue(AveragePeaksProperty, value);
            }
        }

        protected int StreamHandle
        {
            get { return (int)GetValue(StreamHandleProperty); }
            set
            {
                SetValue(StreamHandleProperty, value);
                if (StreamHandle != 0)
                {
                    BASS_CHANNELINFO info = new BASS_CHANNELINFO();
                    Bass.BASS_ChannelGetInfo(StreamHandle, info);
                    sampleFrequency = info.freq;
                }
                else
                {
                    sampleFrequency = 44100;
                }
                BarMappingChanged(this, EventArgs.Empty);
            }
        }
        #endregion

        #region Dependency Property Validation
        private static object CoerceMaximumFrequency(DependencyObject d, object value)
        {
            SpectrumAnalyzer spectrumAnalyzer = (SpectrumAnalyzer)d;
            if ((int)value < spectrumAnalyzer.MinimumFrequency)
                return spectrumAnalyzer.MinimumFrequency + 1;
            return value;
        }

        private static object CoerceMinimumFrequency(DependencyObject d, object value)
        {
            int returnValue = (int)value;
            SpectrumAnalyzer spectrumAnalyzer = (SpectrumAnalyzer)d;
            if (returnValue < 0)
                return returnValue = 0;
            spectrumAnalyzer.CoerceValue(MaximumFrequencyProperty);
            return returnValue;
        }

        private static object CoerceBarCount(DependencyObject d, object value)
        {
            int returnValue = (int)value;
            returnValue = Math.Max(returnValue, 1);
            return returnValue;
        }

        private static object CoercePeakFallDelay(DependencyObject d, object value)
        {
            int returnValue = (int)value;
            returnValue = Math.Max(returnValue, 0);
            return returnValue;
        }

        private static object CoerceBarSpacing(DependencyObject d, object value)
        {
            double returnValue = (double)value;
            returnValue = Math.Max(returnValue, 0);
            return returnValue;
        }
        #endregion

        #region Constructors
        static SpectrumAnalyzer()
        {
            // MaximumFrequency
            FrameworkPropertyMetadata maximumFrequencyMetadata = new FrameworkPropertyMetadata(20000);
            maximumFrequencyMetadata.CoerceValueCallback = new CoerceValueCallback(SpectrumAnalyzer.CoerceMaximumFrequency);
            MaximumFrequencyProperty = DependencyProperty.Register("MaximumFrequency", typeof(int), typeof(SpectrumAnalyzer), maximumFrequencyMetadata);

            // MinimumFrequency
            FrameworkPropertyMetadata minimumFrequencyMetadata = new FrameworkPropertyMetadata(0);
            minimumFrequencyMetadata.CoerceValueCallback = new CoerceValueCallback(SpectrumAnalyzer.CoerceMinimumFrequency);
            MinimumFrequencyProperty = DependencyProperty.Register("MinimumFrequency", typeof(int), typeof(SpectrumAnalyzer), minimumFrequencyMetadata);

            // BarCount
            FrameworkPropertyMetadata barCountMetadata = new FrameworkPropertyMetadata(24);
            barCountMetadata.CoerceValueCallback = new CoerceValueCallback(SpectrumAnalyzer.CoerceBarCount);
            BarCountProperty = DependencyProperty.Register("BarCount", typeof(int), typeof(SpectrumAnalyzer), barCountMetadata);

            // BarSpacing
            FrameworkPropertyMetadata barSpacingMetadata = new FrameworkPropertyMetadata(5.0);
            barSpacingMetadata.CoerceValueCallback = new CoerceValueCallback(SpectrumAnalyzer.CoerceBarSpacing);
            BarSpacingProperty = DependencyProperty.Register("BarSpacing", typeof(double), typeof(SpectrumAnalyzer), barSpacingMetadata);

            // PeakFallDelay
            FrameworkPropertyMetadata peakFallDelayMetadata = new FrameworkPropertyMetadata(5);
            peakFallDelayMetadata.CoerceValueCallback = new CoerceValueCallback(SpectrumAnalyzer.CoercePeakFallDelay);
            PeakFallDelayProperty = DependencyProperty.Register("PeakFallDelay", typeof(int), typeof(SpectrumAnalyzer), peakFallDelayMetadata);
        }

        public SpectrumAnalyzer()
        {
            PeakBrush = new SolidColorBrush(Colors.GreenYellow);
            BarBrush = new LinearGradientBrush(Colors.ForestGreen, Colors.DarkGreen, new Point(0, 1), new Point(0, 0));

            InitializeComponent();

            animationTimer = new DispatcherTimer(DispatcherPriority.ApplicationIdle);
            animationTimer.Interval = TimeSpan.FromMilliseconds(25);
            animationTimer.Tick += new EventHandler(animationTimer_Tick);

            DependencyPropertyDescriptor backgroundDescriptor = DependencyPropertyDescriptor.FromProperty(BackgroundProperty, typeof(SpectrumAnalyzer));
            backgroundDescriptor.AddValueChanged(this, AppearanceChanged);
            DependencyPropertyDescriptor barBrushDescriptor = DependencyPropertyDescriptor.FromProperty(BarBrushProperty, typeof(SpectrumAnalyzer));
            barBrushDescriptor.AddValueChanged(this, AppearanceChanged);

            DependencyPropertyDescriptor maxFrequencyDescriptor = DependencyPropertyDescriptor.FromProperty(MaximumFrequencyProperty, typeof(SpectrumAnalyzer));
            maxFrequencyDescriptor.AddValueChanged(this, BarMappingChanged);
            DependencyPropertyDescriptor minFrequencyDescriptor = DependencyPropertyDescriptor.FromProperty(MinimumFrequencyProperty, typeof(SpectrumAnalyzer));
            maxFrequencyDescriptor.AddValueChanged(this, BarMappingChanged);
            DependencyPropertyDescriptor barCountDescriptor = DependencyPropertyDescriptor.FromProperty(BarCountProperty, typeof(SpectrumAnalyzer));
            maxFrequencyDescriptor.AddValueChanged(this, BarMappingChanged);

            BarMappingChanged(this, EventArgs.Empty);

            if (!DesignerProperties.GetIsInDesignMode(this))
            {
                bassEngine = BassEngine.Instance;
                UIHelper.Bind(bassEngine, "ActiveStreamHandle", this, StreamHandleProperty);
                animationTimer.Start();
            }
        }

        void animationTimer_Tick(object sender, EventArgs e)
        {
            UpdateSpectrum();
        }
        #endregion

        #region Event Overrides
        protected override void OnRender(DrawingContext dc)
        {
            base.OnRender(dc);
            anaylzerBuffer = new RenderTargetBitmap((int)RenderSize.Width, (int)RenderSize.Height, 96, 96, PixelFormats.Pbgra32);
            if (SpectrumImage != null)
            {
                SpectrumImage.Source = anaylzerBuffer;
            }
            UpdateSpectrum();
        }

        protected override void OnRenderSizeChanged(SizeChangedInfo sizeInfo)
        {
            base.OnRenderSizeChanged(sizeInfo);
            BarMappingChanged(this, EventArgs.Empty);
        }
        #endregion

        #region Private Utility Methods
        private void UpdateSpectrum()
        {
            if (bassEngine == null || drawingVisual == null || anaylzerBuffer == null || RenderSize.Width < 1 || RenderSize.Height < 1)
                return;

            if (!bassEngine.IsPaused && (StreamHandle == 0 || (GetFFTBuffer(StreamHandle, (int)maxFFT) < 1)))
                return;

            // Clear Canvas
            anaylzerBuffer.Clear();

            using (DrawingContext drawingContext = drawingVisual.RenderOpen())
            {
                // Draw background if applicable.    
                if (Background != null)
                    drawingContext.DrawRectangle(Background, null, new Rect(0, 0, RenderSize.Width, RenderSize.Height));

                // Draw Spectrum Lines
                RenderSpectrumLines(drawingContext);
            }

            anaylzerBuffer.Render(drawingVisual);
        }

        private int GetFFTBuffer(int handle, int length)
        {
            return Un4seen.Bass.Bass.BASS_ChannelGetData(handle, this.channelData, length);
        }

        private void RenderSpectrumLines(DrawingContext dc)
        {
            double fftBucketHeight = 0f;
            double barHeight = 0f;
            double lastPeakHeight = 0f;
            double peakYPos = 0f;
            double height = this.RenderSize.Height;
            int barIndex = 0;
            double peakDotHeight = Math.Max(barWidth / 2.0f, 1);
            double barHeightScale = (height - peakDotHeight);
            const double minDBValue = -90;
            const double maxDBValue = 0;
            const double dbScale = (maxDBValue - minDBValue);

            for (int i = minimumFrequencyIndex; i < maximumFrequencyIndex; i++)
            {
                // If we're paused, keep drawing, but set the current height to 0 so the peaks fall.
                if (bassEngine.IsPaused)
                {
                    barHeight = 0f;
                }
                else // Draw the maximum value for the bar's band
                {
                    switch (BarHeightScaling)
                    {
                        case BandedSpectrumAnalyzer.BarHeightScaling.Decibel:
                            double dbValue = 20 * Math.Log10((double)channelData[i]);
                            fftBucketHeight = ((dbValue - minDBValue) / dbScale) * barHeightScale;
                            break;
                        case BandedSpectrumAnalyzer.BarHeightScaling.Linear:
                            fftBucketHeight = (channelData[i] * scaleFactorLinear) * barHeightScale;
                            break;
                        case BandedSpectrumAnalyzer.BarHeightScaling.Sqrt:
                            fftBucketHeight = (((Math.Sqrt((double)this.channelData[i])) * scaleFactorSqr) * barHeightScale);
                            break;
                    }

                    if (barHeight < fftBucketHeight)
                        barHeight = fftBucketHeight;
                    if (barHeight < 0f)
                        barHeight = 0f;
                }

                // If this is the last FFT bucket in the bar's group, draw the bar.
                int currentIndexMax = FrequencyScaleIsLinear ? barIndexMax[barIndex] : barLogScaleIndexMax[barIndex];
                if (i == currentIndexMax)
                {
                    // Peaks can't surpass the height of the control.
                    if (barHeight > height)
                        barHeight = height;

                    if (AveragePeaks && barIndex > 0)
                        barHeight = (lastPeakHeight + barHeight) / 2;

                    peakYPos = barHeight;

                    if (channelPeakData[barIndex] < peakYPos)
                        this.channelPeakData[barIndex] = (float)peakYPos;
                    else
                        this.channelPeakData[barIndex] = (float)(peakYPos + (PeakFallDelay * this.channelPeakData[barIndex])) / ((float)(PeakFallDelay + 1));

                    double xCoord = BarSpacing + (barWidth * barIndex) + (BarSpacing * barIndex) + 1;

                    // Draw the bars
                    if (BarBrush != null)
                        dc.DrawRectangle(BarBrush, null, new Rect(xCoord, (height - 1) - barHeight, barWidth, barHeight));

                    // Draw the peaks
                    if (PeakBrush != null)
                        dc.DrawRectangle(PeakBrush, null, new Rect(xCoord, (height - 1) - this.channelPeakData[barIndex], barWidth, peakDotHeight));

                    lastPeakHeight = barHeight;
                    barHeight = 0f;
                    barIndex++;
                }
            }
        }
        #endregion

        #region Dependency Property Changed Handlers
        private void AppearanceChanged(object sender, EventArgs e)
        {
            UpdateSpectrum();
        }

        private void BarMappingChanged(object sender, EventArgs e)
        {
            barWidth = Math.Max((int)((RenderSize.Width - (BarSpacing * (BarCount + 1))) / (double)BarCount), 1);
            maximumFrequencyIndex = Math.Min(Utils.FFTFrequency2Index(MaximumFrequency, maxFFTData, sampleFrequency) + 1, 2047);
            minimumFrequencyIndex = Math.Min(Utils.FFTFrequency2Index(MinimumFrequency, maxFFTData, sampleFrequency), 2047);
            bandWidth = Math.Max(((double)(maximumFrequencyIndex - minimumFrequencyIndex)) / RenderSize.Width, 1.0);

            int actualBarCount = Math.Max((int)((RenderSize.Width - BarSpacing) / (barWidth + BarSpacing)), 1);
            channelPeakData = new float[actualBarCount];

            int indexCount = maximumFrequencyIndex - minimumFrequencyIndex;
            int linearIndexBucketSize = (int)Math.Round((double)indexCount / (double)actualBarCount, 0);
            List<int> maxIndexList = new List<int>();
            List<int> maxLogScaleIndexList = new List<int>();
            double maxLog = Math.Log(actualBarCount, actualBarCount);
            for (int i = 1; i < actualBarCount - 1; i++)
            {
                maxIndexList.Add(minimumFrequencyIndex + (i * linearIndexBucketSize));
                int logIndex = (int)((maxLog - Math.Log(actualBarCount - i, actualBarCount)) * indexCount) + minimumFrequencyIndex;
                maxLogScaleIndexList.Add(logIndex);
            }
            maxIndexList.Add(maximumFrequencyIndex);
            maxLogScaleIndexList.Add(maximumFrequencyIndex);
            barIndexMax = maxIndexList.ToArray();
            barLogScaleIndexMax = maxLogScaleIndexList.ToArray();
        }
        #endregion
    }

    public enum BarHeightScaling
    {
        Decibel,
        Sqrt,
        Linear
    }
}

The UpdateSpectrum() method is handling the writing of our bar drawing to the buffer. Using a DrawingVisual and DrawingContext directly gives me great performance. I currently have the timer on this Spectrum Analyzer to draw every 25 ms (which translates to about 40 FPS). Even at this speed, I find the application barely registering 1% CPU, and that’s in the confines of a virtual machine. The actual method I’m using to draw FFT data is inside of RenderSpectrumLines(). You’ll note that we take the peak value in the frequency range of a bar and display that. This is all pretty standard fare for this sort of spectrum analyzer. I encourage you to read up on Fast Fourier Transforms and Audio Processing if this interests you.

Spectrum Analyzer Control With A Light Theme

Spectrum Analyzer Control With A Light Theme

That’s pretty much it! As you can see, I dropped the control in a Window, added some basic playback controls, tag reading, and fancy WPF reflection to give it a nice look. I encourage you to download the source code if you’re interested in including something like this in your own WPF application. If you have questions, see room for improvement, or have useful information I left out, please leave me a comment!

Download the Spectrum Analyzer and Source Code As Part of the WPF Sound Visualization Library
Download Source Code For This Post (Deprecated!)

Update 2/6/2011:

  • Cleaned up some unused references. (Had System.Drawing in there, oops!)
  • Added XML comments to dependency properties on SpectrumAnalyzer UserControl
  • Revised theme selection layout
  • Exposed BarSpacing Property (was accidentally made private)
  • Added AveragePeaks Dependency Property
  • Gradiated backgrounds to demonstrate true WPF transparency support
  • Added option to make the X Axis (Frequency) scale logrithmicly
  • Added another height scaling configuration, decibel. “BarHeightIsLinear” property replaced with “BarHeightScaling”
  • Optimized bar bucket check.
  • Moved all of the Bass logic into an INotifyPropertyChanged class so binding is possible